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1 Citing penalized .

To cite the package penalized , please cite Goeman, J. J., L1 penalized estimation
in the Cox proportional hazards model. Biometrical Journal 52(1), 70�84.

2 Introduction

This short note explains the use of the penalized package. The package is de-
signed for penalized estimation in generalized linear models. The lasso and
elastic net algorithm that it implements is described in Goeman (2010).

The supported models at this moment are linear regression, logistic regres-
sion, poisson regression and the Cox proportional hazards model, but others are
likely to be included in the future. As to penalties, the package allows an L1 ab-
solute value (�lasso�) penalty Tibshirani (1996, 1997), an L2 quadratic (�ridge�)
penalty (Hoerl and Kennard, 1970; Le Cessie and van Houwelingen, 1992; Ver-
weij and Van Houwelingen, 1994), or a combination of the two (the �naive elastic
net� of Zou and Hastie, 2005). It is also possible to have a fused lasso penalty
with L1 absolute value (�lasso�) penalty on the coe�cients and their di�erences
Tibshirani et al. (2005); Tibshirani and Wang (2007). The package also includes
facilities for likelihood cross-validation and for optimization of the tuning pa-
rameter.

L1 and L2 penalized estimation methods shrink the estimates of the regres-
sion coe�cients towards zero relative to the maximum likelihood estimates. The
purpose of this shrinkage is to prevent over�t arising due to either collinearity
of the covariates or high-dimensionality. Although both methods are shrinkage
methods, the e�ects of L1 and L2 penalization are quite di�erent in practice.
Applying an L2 penalty tends to result in all small but non-zero regression co-
e�cients, whereas applying an L1 penalty tends to result in many regression
coe�cients shrunk exactly to zero and a few other regression coe�cients with
comparatively little shrinkage. Combining L1 and L2 penalties tends to give a
result in between, with fewer regression coe�cients set to zero than in a pure L1
setting, and more shrinkage of the other coe�cients. The fused lasso penalty, an
extension of the lasso penalty, encourages sparsity of the coe�cients and their
di�erences by penalizing the L1-norm for both of them at the same time, thus
producing sparse and piecewise constant stretches of non-zero coe�cients. The
amount of shrinkage is determined by tuning parameters λ1 and λ2. A value
of zero always means no shrinkage (= maximum likelihood estimation) and a
value of in�nity means in�nite shrinkage (= setting all regression coe�cients to
zero). For more details about the methods, please refer to the above-mentioned
papers.

It is important to note that shrinkage methods are generally not invariant
to the relative scaling of the covariates. Before �tting a model, it is prudent to
consider if the covariates already have a natural scaling relative to each other
or whether they should be standardized.

The main algorithm for L1 penalized estimation (lasso, elastic net) that used
in this package is documented in Goeman (2010). It has been combined with
ideas from Eilers et al. (2001) and Van Houwelingen et al. (2006) for e�cient L2
penalized estimation. The algorithm used for fused lasso penalized estimation
is described in Chaturvedi (2012)
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3 Penalized likelihood estimation

The basic function of the package is the penalized function, which performs
penalized estimation for �xed values of λ1 and λ2. Its syntax has been loosely
modeled on that of the functions glm (package stats) and coxph (package sur-

vival), but it is slightly more �exible in some respects. Two main input types
are allowed: one using formula objects, one using matrices.

3.1 the nki70 data

As example data we use the 70 gene signature of Van 't Veer et al. (2002) in
the gene expression data set of Van de Vijver et al. (2002).

> library(penalized)

> library(survival)

> data(nki70)

This loads a data.frame with 144 breast cancer patients and 77 covariates.
The �rst two covariates indicate the survival time and event status (time is in
months), the next �ve are clinical covariates (diameter of the tumor, lymph node
status, estrogen receptor status, grade of the tumor and age of the patients), and
the other 70 are gene expression measurements of the 70 molecular markers. As
we are interested in survival as an outcome, we also need the survival package.

> set.seed(1)

3.2 the penalized function

The penalized function can be used to �t a penalized prediction model for
prediction of a response. For example, to predict the Estrogen Receptor status
ER for the patients in the nki70 data with the two markers �DIAPH3� and
�NUSAP1� at λ1 = 0 and λ2 = 1, we can say (all are equivalent)

> fit <- penalized(ER, ~DIAPH3+NUSAP1, data=nki70, lambda2=1)

> fit <- penalized(ER, nki70[,10:11], data=nki70, lambda2=1)

> fit <- penalized(ER~DIAPH3+NUSAP1, data=nki70, lambda2=1)

The covariates may be speci�ed in the second function argument (penalized)
as a formula object with an open left hand side, as in the �rst line. Alternatively,
they may be speci�ed as a matrix or data.frame, as in the second line. If, as
here, they are supplied as a data.frame, they are coerced to a matrix.

For consistency with glm and coxph the third option is also allowed, in which
the covariates are included in the �rst function argument.

The penalized function tries to determine the appropriate generalized linear
model from the response variable. This automatic choice may not always be
appropriate. In such cases the model may be speci�ed explicitly using the
model argument.

For the examples in the rest of this vignette we use the Cox proportional
hazerds model, using the survival time (Surv(time,event)) as the response to
be predicted. This is a Surv object.

> fit <- penalized(Surv(time,event)~DIAPH3+NUSAP1, data=nki70, lambda2=1)
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We use attach to avoid specifying the data argument every time.

> attach(nki70)

3.3 choice of lambda

It is di�cult to say in advance which value of lambda1 or lambda2 to use. The
penalized package o�ers ways of �nding optimal values using cross-validation.
This is explained in Section 5

Note that for small values of lambda1 or lambda2 the algorithm be very
slow, may fail to converge or may run into numerical problems, especially in
high-dimensional data. When this happens, increase the value of lambda1 or
lambda2 .

It is possible to specify both lambda1 or lambda2 . In this case both types
of penalties apply, and a so-called elastic net.

> fit <- penalized(Surv(time,event)~DIAPH3+NUSAP1, data=nki70, lambda1=1, lambda2=1)

Sometimes it can be useful to have di�erent values of lambda1 or lambda2

for di�erent covariates. This can be done in penalized by specifying lambda1 or
lambda2 as a vector.

> fit <- penalized(Surv(time,event)~DIAPH3+NUSAP1, data=nki70, lambda2=c(1,2))

3.4 pen�t objects

The penalized function returns a pen�t object, from which useful information
can be extracted. For example, to extract regression coe�cients, (martingale)
residuals, individual relative risks and baseline survival curve, write

> residuals(fit)[1:10]

125 127 128 129 130 132 134

-0.1554545 0.7119251 -0.3710430 -0.2335851 -0.4101212 -0.3424704 0.7235891

135 136 137

-0.6391287 0.7468025 -0.4893899

> fitted(fit)[1:10]

125 127 128 129 130 132 134 135

0.4810103 1.0518078 0.9170982 0.7227633 1.2690045 1.1124577 0.8552757 1.4158589

136 137

1.1712807 0.6481456

> basesurv(fit)

A "breslow" object with 1 survival curve and 50 time points.

See help(penfit) for more information on pen�t objects and Section 5.3 on
breslow objects.

The coefficients function extracts the named vector of regression coe�-
cients. It has an extra second argument which that can be used to specify which
coe�cients are of interest. Possible values of which are nonzero (the default)
for extracting all non-zero coe�cients, all for all coe�cients, and penalized

and unpenalized for only the penalized or unpenalized ones.
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> coefficients(fit, "all")

To extract the loglikelihood of the �t and the evaluated penalty function,
use

> loglik(fit)

[1] -258.5714

> penalty(fit)

L1 L2

0.000000 1.409874

The loglik function gives the loglikelihood without the penalty, and the
penalty function gives the �tted penalty, i.e. for L1 lambda1 times the sum of
the absolute values of the �tted penalized coe�cients, and for L2 it is 0.5 times
lambda1 times the sum of squared penalized coe�cients.

The pen�t object can also be used to generate predictions for new data using
the predict function. Pretending that the �rst three subjects in the nki70 data
are new subjects, we can �nd their predicted survival curves with either of

> predict(fit, ~DIAPH3+NUSAP1, data=nki70[1:3,])

A "breslow" object with 3 survival curves and 50 time points.

> predict(fit, nki70[1:3,c("DIAPH3","NUSAP1")])

A "breslow" object with 3 survival curves and 50 time points.

See Section 5.3 for more on breslow objects. We can get �ve year survival
predictions by saying

> pred <- predict(fit, nki70[1:3,c("DIAPH3","NUSAP1")])

> survival(pred, time=5)

125 127 128

0.8723044 0.7417559 0.7706856

3.5 standardization

If the covariates are not naturally on the same scale, it is advisable to standardize
them. The function argument standardize (default: FALSE) standardizes the
covariates to unit second central moment before applying penalization. This
standardization makes sure that each covariate is a�ected more or less equally
by the penalization.

The �tted regression coe�cients that the function returns have been scaled
back and correspond to the original scale of the covariates. To extract the regres-
sion coe�cients of the standardized covariates, use the coefficients function
with standardize = TRUE. This option is also available if the model was not
�tted with standardized covariates, as the covariates are always standardized
internally for numerical stability. To �nd the weights used by the function, use
weights(fit).
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> coefficients(fit)

DIAPH3 NUSAP1

0.223606 1.176807

> coefficients(fit, standardize = TRUE)

DIAPH3 NUSAP1

0.05243638 0.31416138

> weights(fit)

DIAPH3 NUSAP1

0.2345035 0.2669609

3.6 unpenalized covariates

In some situations it is desirable that not all covariates are subject to a penalty.
Any additional covariates that should be included in the model without be-
ing penalized can be speci�ed separately. using the third function argument
(unpenalized). For example (the two commands below are equivalent)

> fit <- penalized(Surv(time,event), nki70[,8:77], ~ER, lambda2=1)

> fit <- penalized(Surv(time,event)~ER, nki70[,8:77], lambda2=1)

This adds estrogen receptor status as an unpenalized covariate. Note in the
second line that right hand side of the formula object in the response argument
is automatically taken to be the unpenalized argument because the penalized

argument was given by the user.
In linear and logistic regression the intercept is by default never penalized.

The use of an intercept can be suppressed with penalized = 0̃. The intercept
is always removed from the penalized model matrix, unless the penalized model
consists of only an intercept.

It is possible to include an o�set term in the model. Use the offset function
in the unpenalized argument, which must then be of formula type. The Cox
model implementation allows strata terms.

> fit <- penalized(Surv(time,event)~strata(ER), nki70[,8:77], lambda2=1)

3.7 factors

If some of the factors included in the formula object penalized are of type factor ,
these are automatically made into dummy variables, as in glm and coxph, but
in a special way that is more appropriate for penalized regression.

Unordered factors are turned into as many dummy variables as the factor
has levels. This ensures a symmetric treatment of all levels and guarantees that
the �t does not depend on the ordering of the levels. See help(contr.none)

for details.
Ordered factors are turned into dummy variables that code for the di�er-

ence between successive levels (one dummy less than the number of levels).
L2 penalization on such factors therefore leads to small successive di�erences;
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L1 penalization leads to ranges of successive levels with identical e�ects. See
help(contr.diff) for details.

When �tting a model with factors with more than two levels with an L1
penalty, it is advisable to add a small L2 penalty as well in order to speed up
convergence. By varying the L2 penalty it can be checked that the L2 penalty
is not so large that it in�uences the estimates.

To override the automatic choice of contrasts, use C (package stats).
The response argument may also be also be speci�ed as a factor in a logistic

regression model. In that case, the value levels(response)[1] is treated as a
failure (0), and all other values as a success (1).

3.8 �tting in steps

In some cases it may be interesting to visualize the e�ect of changing the tuning
parameter lambda1 or lambda2 on the values of the �tted regression coe�cients.
This can be done using the function argument steps in combination with the
plotpath function. At this moment, this functionality is only available for
visualizing the e�ect of lambda1 (not forfused lasso estimation).

When using the steps argument, the function starts �tting the model at
the maximal value of λ1, that is the smallest value that shrinks all regression
coe�cients to zero. From that value it continues �tting the model for steps suc-
cessively decreasing values of λ1 until the speci�ed value of lambda1 is reached.

If the argument steps is supplied to penalized, the function returns a list

of pen�t objects. These can be accessed individually or their coe�cients can be
plotted using plotpath.

> fit <- penalized(Surv(time,event), nki70[,8:77], lambda1=1,

steps=50, trace = FALSE)

> plotpath(fit, log="x")

Following Park and Hastie (2007) it is possible to choose the values of λ1

in such a way that these are the change-points at which the active set changes.
This can be done by setting steps = "Park" .

> fit <- penalized(Surv(time,event), nki70[,8:77], lambda1=1,

steps="Park", trace = FALSE)

Note that plotpath plots the unstandardized coe�cients by default. Stan-
dardized coe�cients can be plotted (even when the model was not �tted with
standardized coe�cients) with the standardize argument.

3.9 a positivity constraint

In some applications it is natural to restrict all estimated regression coe�cients
to be non-negative. Such a positivity constraint is an alternative type of con-
strained estimation that is easily combined with L1 and L2 penalization in the
algorithm implemented in the penalized package.

To add a positivity restriction to the regression coe�cients of all penalized
covariates, set the function argument positive to TRUE (the default is FALSE).
Note that it is not strictly necessary to also include an L1 or L2 penalty; the
model can also be �tted with only a positivity constraint.
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> plotpath(fit, log="x")
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> fit <- penalized(Surv(time,event), nki70[,8:77], positive=TRUE)

> coefficients(fit)

Contig63649_RC AA555029_RC ALDH4A1 QSCN6L1 FGF18

0.56883350 1.19479968 0.78893478 1.13549561 0.21511238

Contig32125_RC BBC3 RP5.860F19.3 OXCT1 MMP9

5.19060693 0.32578805 0.09279051 1.08253778 0.90786251

RUNDC1 ECT2 WISP1 MTDH Contig40831_RC

4.31995520 1.96799708 0.11182254 0.20738967 0.08058631

COL4A2 FBXO31 ORC6L RFC4 CDCA7

2.19059076 1.04830672 1.75330155 0.39074008 0.44076424

C9orf30 IGFBP5.1 PRC1 CENPA NM_004702

0.59695825 2.48990214 1.77488012 0.57635421 0.56779362

ESM1

1.63222843

It is also possible to constrain only part of the regression coe�cients to be
non-negative by giving the positive argument as a logical vector.

> coef(penalized(Surv(time,event), nki70[,8:16], positive=c(F,rep(T,8))))
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> fit0 <- penalized(Surv(time,event), nki70[,8:77], positive=TRUE,

steps=50)

> plotpath(fit0)
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3.10 fused lasso

For problems involving features that can be ordered in some meaningful way, it
might be useful to take into account the information about their spatial structure
while estimating the coe�cients. For example, copy number data exhibit spatial
correlation along the genome. This suggests that feature selection should take
genomic location into account for producing more interpretable results for copy
number based classi�ers. Fused lasso takes the genomic location into account
by putting a L1 penalty on the coe�cients as well as on their di�erences. It,
thus produces sparse results with local constancy of the coe�cient pro�le. Fot
estimating using fused lasso one can use the basic penalized function of the
package with the function argument fusedl set to TRUE. The argument fusedl

can take values in two form: logical or a vector. For example in case of copy
number data if the information about the genomic location is available then
fusedl can be given as an input, a vector of these locations. If the function
argument fusedl is set to TRUE or it is a vector then the penalized function
performs fused lasso penalized estimation for a �xed value of λ1 and λ2. Note
that for fused lasso estimation, the value for λ2 given in the function is used
for putting L1 penalty on the di�erences of the coe�cients. We demonstrate
the fused lasso feature of the penalized function by applying it on a simulated
dataset with binomial response. We generate a data set with 100 samples and
70 probes, with mean equal to 0 and variance equal to 0.5.

> X <- matrix(0,70,100)

> for (i in 1:100){

X[1:70,i] <- rnorm(70,mean=0,sd=0.5)

}

> colnames(X) = as.character (1:ncol(X))

> rownames(X) = as.character (1:nrow(X))

Out of these 100 samples, 50 are selected randomly for getting aberrations
in the region 30:40. The mean for the aberrated region is taken to be -0.7 and
variance 0.5.

> a <- sample(1:ncol(X),50,prob=rep(0.5,length(1:ncol(X))))

> for (i in 1:50){

X[30:40,a[i]]<-rnorm(length(30:40),mean = -0.7 ,sd=0.5)

}

We generate the probabilities of the samples being 1 or 0, by using beta
equal to -1 in logistic model.

> Xbeta <- rnorm(100, mean = 0, sd = 0.5)

> Xbeta[a] <- rnorm (length(a) , mean = -0.7 , sd = 0.5)

> beta <- numeric(100)

> beta [1:length(beta)] <- -1

> responsep <- numeric(100)

> for(i in 1:100){

coeff <- -beta[i] * Xbeta[i]

responsep[i] <- 1/(1+exp(coeff))

}
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> fit <- penalized(response, X, lambda1 = 2, lambda2=3,fusedl=TRUE)

> plot(coefficients(fit,"all")[-1],main = "fused lasso", col="red",xlab = "probes",ylab = "coefficients",type="l")
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> X <- t(X)

> response=responsep

> for(i in 1:100){

response[i] <- sample(0:1 , size = 1 , prob = c((1-responsep[i]),responsep[i]))

}

For estimating the coe�cients using fused lasso, the �asso argument in the
penalized function can take two forms. If it is logical then the genomic location
(for example chromosome number in copy number data) information becomes
1 for every probe. Otherwise if the information is available then it can be given
as a vector to the �asso argument.

> fit <- penalized(response, X, lambda1 = 2, lambda2=2,fusedl=TRUE)

> chr = c(rep(1,30),rep(2,20),rep(3,10),rep(4,10))

> fit <- penalized(response, X, lambda1 = 2, lambda2=2,fusedl=chr)

4 Pretesting

Before �tting a penalized regression model it can be worthwhile to test the global
null hypothesis of no association between any of the predictor variables and the
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response. A package that can do this is, and which ties very closely to the penal-
ized package is the globaltest package, available from www.bioconductor.org.
The package can be installed using the bioconductor install script

> source("http://bioconductor.org/biocLite.R")

> biocLite("globaltest")

The interface of globaltest is very similar to the interface of penalized . To
test for any evidence of association in the nki70 data, say

> gt(Surv(time,event), nki70[,8:77])

The resulting p-value can be interpreted as a global indicator of predictive
ability. Data sets that have a signi�cant test result almost always have a an
optimal lambda value smaller than in�nity.

See the vignette of the globaltest package for details.

5 Cross-validation and optimization

Cross-validation can be used to assess the predictive quality of the penalized
prediction model or to compare the predictive ability of di�erent values of the
tuning parameter.

The penalized package uses likelihood cross-validation for all models. Like-
lihood cross-validation has some advantages over other optimization criteria: it
tends to be a continuous function of the tuning parameter; it can be de�ned in
a general way for almost any model, and it does not require calculation the ef-
fective dimension of a model, which is problematic in L1 penalized models. For
the Cox proportional hazards model, the package uses cross-validated log partial
likelihood (Verweij and Van Houwelingen, 1993), which is a natural extension
of the cross-validated log likelihood to the Cox model.

Five functions are available for calculating the cross-validated log likelihood
and for optimizing the cross-validated log likelihood with respect to the tuning
parameters. They have largely the same arguments. See help(cvl) for an
overview.

5.1 cross-validation

The function cvl calculates the cross-validated log likelihood for �xed values of
λ1 and λ2.

It accepts the same arguments as penalized (except steps: see profL1

below) as well as the fold argument. This will usually be a single number k to
indicate k-fold cross-validation. In that case, the allocation of the subjects to
the folds is random. Alternatively, the precise allocation of the subjects into
the folds can be speci�ed by giving fold as a vector of the length of the number
of subjects with values form 1 to k, each indicating the fold allocation of the
corresponding subject. The default is to do leave-one-out cross-validation. For
having cross-validated fused lasso estimates, one should set the argument fusedl
to TRUE.

In addition there is the argument approximate (default value is FALSE). If its
value is set to TRUE, instead of true cross-validation an approximation method
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is used that is much faster. This method is explained in more detail in the
next subsection. When a linear model is �tted, the approximation method is no
longer approximative but results in exact answers. For this reason, the package
will automatically set the value of approximate to TRUE in case of a linear model.
This argument does not works for fused lasso cross-validation.

The function cvl returns a names list with four elements:

cvl the cross-validated log likelihood.

fold the fold allocation used; this may serve as input to a next call to cvl to
ensure comparability.

predictions the predictions made on each left-out subject. The format de-
pends on the model used. In logistic regression this is just a vector of
probabilities. In the Cox model this is a collection of predicted survival
curves (a breslow object). In the linear model this is a collection of pre-
dicted means and predicted standard deviations (the latter are the maxi-
mum penalized likelihood estimates of σ2).

fullfit the �t on the full data (a pen�t object)

> fit <- cvl(Surv(time,event), nki70[,8:77], lambda1=1, fold=10)

> fit$cvl

[1] -255.2703

> fit$fullfit

Penalized cox regression object

70 regression coefficients of which 28 are non-zero

Loglikelihood = -214.92

L1 penalty = 24.29771 at lambda1 = 1

> fit <- cvl(Surv(time,event), nki70[,8:77], lambda1=2, fold=fit$fold)

5.2 approximated cross-validation

To save time, one can choose to set the argument approximate in the function
cvl to TRUE. For now, this option is only available for ridge models, so models
where the lasso penalty equals 0.

In that case the cross-validated likelihood will not be calculated by leaving
out one or a set of observation each time and re�tting the model, but will be
based on approximations. These approximations are based on a Taylor expan-
sion around the estimate of the full model. Since re�tting the model is no longer
necessary, a lot of time can be saved in this way.

The results are in most cases quite accurate, but the method tends to be a
little too optimistic which results in slightly too high values of the corresponding
cvl. The method works best for large data sets and a resampling scheme with
many folds.

The same option can be chosen in optL2 and profL2 (see below). Here one
must again be aware of the tendency to be a little too optimistic which will
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result in optimal penalty values that are a little smaller than the ones found by
real cross-validation.

In the following example, the cross-validated log-likelihood is calculated
twice. First by using leave-one-out cross-validation, then by using the approxi-
mation method.

> fit1 <- cvl(Surv(time,event), nki70[,8:77], lambda2=10)

> fit1$cvl

[1] -251.0248

> fit2 <- cvl(Surv(time,event), nki70[,8:77], lambda2=10, approximate=TRUE)

> fit2$cvl

[1] -250.9277

As we can see, the answers are very similar.

5.3 breslow objects

The breslow class is de�ned in the penalized package to store estimated survival
curves. They are used for the predictions in cross-validation and for the baseline
survival estimated in the penalized function. See help(breslow) for details.

> fit$predictions

A "breslow" object with 144 survival curves and 51 time points.

> time(fit$predictions)

[1] 0.0000000 0.3531828 0.6488706 0.9363276 0.9609856 1.2101300

[7] 1.3880903 1.5003422 1.6098563 1.6125941 1.7166324 1.7330595

[13] 1.9466119 1.9657769 1.9739904 2.2231348 2.2970568 2.3353867

[19] 2.3408624 2.6146475 2.6803559 2.6967830 2.8117728 2.8528405

[25] 3.1211499 3.2197125 3.4195756 3.4387406 3.6550308 3.9151266

[31] 4.2190281 4.4462697 4.6214921 4.6625599 4.9719370 5.1170431

[37] 6.5653662 6.9952088 8.1286790 8.3039014 8.5284052 8.5612594

[43] 8.9253936 8.9883641 9.9986311 11.2114990 11.7399042 12.4654346

[49] 14.0123203 17.4209446 17.6591376

> as.data.frame(basesurv(fit$fullfit))[1:10,]

survival time

1 1.0000000 0.0000000

2 0.9947948 0.3531828

3 0.9895787 0.6488706

4 0.9842225 0.9363276

5 0.9788527 0.9609856

6 0.9733970 1.2101300

7 0.9678684 1.3880903

8 0.9622905 1.5003422

9 0.9566938 1.6098563

10 0.9509489 1.6125941
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> plot(fit$predictions)
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> plot(fit$predictions)

We can easily extract the 5 year cross-validated survival probabilities

> survival(fit$predictions, 5)[1:10]

1 2 3 4 5 6 7 8

0.9352079 0.6817205 0.7814439 0.8895766 0.6752050 0.6943773 0.8033875 0.4208009

9 10

0.6467053 0.9106909

5.4 pro�ling the cross-validated log likelihood

The functions profL1 and profL2 can be used to examine the e�ect of the
parameters λ1 and λ2 on the cross-validated log likelihood. The profL1 function
can be used to vary λ1 while keeping λ2 �xed, vice versa for profL2.

The minimum and maximum values between which the cross-validated log
likelihood is to be pro�led can be given as minlambda1 and maxlambda1 or
minlambda2 and maxlambda2 , respectively. The default value of minlambda1

and minlambda2 is at zero. The default value of maxlambda1 is at the maximal
value of λ1, that is the smallest value that shrinks all regression coe�cients to
zero. There is no default for maxlambda2 .

The number of steps between the minimal and maximal values can be given
in the steps argument (default 100). These steps are equally spaced if the
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argument log is FALSE or equally spaced on the log scale if the argument log

is TRUE. Note that the default value of log di�ers between profL1 (FALSE) and
profL2 (TRUE). If log is TRUE, minlambda1 or minlambda2 must be given by the
user as the default value is not usable.

By default, the pro�ling is stopped prematurely when the cross-validated log
likelihood drops below the cross-validated log likelihood of the null model with
all penalized regression coe�cients equal to zero. This is done because it avoids
lengthy calculations at small values of λ when the models are most likely not
interesting. The automatic stopping can be controlled using the option minsteps

(default steps/2). The algorithm only considers early stopping after it has done
at least minsteps steps. Setting minsteps equal to steps cancels the automatic
stopping.

The functions profL1 and profL2 return a named list with the same elements
as returned by cvl, but each of cvl, predictions, fullfit is now a vector or
a list (as appropriate) as multiple cross-validated likelihoods were calculated.
An additional vector lambda is returned which lists the values of λ1 or λ2 at
which the cross-validated likelihood was calculated.

The allocation of the subjects into cross-validation folds is done only once,
so that all cross-validated likelihoods are calculated using the same allocation.
This makes the cross-validated log likelihoods more comparable. As in cvl the
allocation is returned in fold.

It is also possible in these functions to set fold = 1. This will cause no cross-
validation to be performed, but will let only the full data �ts be calculated. This
can be used in a similar way to the use of the penalized function with its steps
argument, only with more �exibility.

The pro�les can be plotted using the output of profL1 and profL2 or directly
using the plot arguments of these functions.

> fit1 <- profL1(Surv(time,event), nki70[,50:70],fold=10, plot=TRUE)

> fit2 <- profL2(Surv(time,event), nki70[,50:70],fold=fit1$fold,

minl = 0.01, maxl = 1000)

> plot(fit2$lambda, fit2$cvl, type="l", log="x")

The plotpath function can again be used to visualize the e�ect of the tuning
parameter on the regression coe�cients.

> plotpath(fit2$fullfit, log="x")

5.5 optimizing the cross-validated likelihood

Often we are not interested in the whole pro�le of the cross-validated likelihood,
but only in the optimum. The functions optL1 and optL2 can be used to �nd
the optimal value of λ1 or λ2.

The algorithm used for the optimization is the Brent algorithm for minimiza-
tion without derivatives (Brent, 1973, see also help(optimize)). When using
this algorithm, it is important to realize that this algorithm is guaranteed to
work only for unimodal functions and that it may converge to a local maximum.
This is especially relevant for L1 optimization, as the cross-validated likelihood
as a function of λ1 very often has several local maxima. It is recommended only
to use optL1 in combination with profL1 to prevent convergence to the wrong
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> plot(fit1$lambda, fit1$cvl, type="l")
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optimum. The cross-validated likelihood as a function of λ2, on the other hand,
is far better behaved and practically never has local maxima. The function
optL2 can safely be used even without combining it with profL2.

The functions optL1 and optL2 take the same arguments as cvl, and some
additional ones.

The arguments minlambda1 and maxlambda1 , and minlambda2 and
maxlambda2 can be used to specify the range between which the cross-validated
log likelihood is to be optimized. Both arguments can be left out in both func-
tions, but supplying them can improve convergence speed. In optL1, the pa-
rameter range can be use to ensure that the function converges to the right
maximum. In optL2 the user can also supply only one of minlambda2 and
maxlambda2 to give the algorithm advance information of the order of mag-
nitude of λ2. In this case, the algorithm will search for an optimum around
minlambda2 or maxlambda2 .

The functions optL1 and optL2 return a named list just as cvl, with an
additional element lambda which returns the optimum found. The returned
cvl, predictions, fullfit all relate to the optimal λ found.

> opt1 <- optL1(Surv(time,event), nki70[,50:70], fold=fit1$fold)

> opt1$lambda

[1] 1.865688

> opt1$cvl
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> plot(fit2$lambda, fit2$cvl, type="l", log="x")
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[1] -256.3876

> opt2 <- optL2(Surv(time,event), nki70[,50:70], fold=fit2$fold)

6 A note on standard errors and con�dence in-

tervals

It is a very natural question to ask for standard errors of regression coe�cients
or other estimated quantities. In principle such standard errors can easily be
calculated, e.g. using the bootstrap.

Still, this package deliberately does not provide them. The reason for this
is that standard errors are not very meaningful for strongly biased estimates
such as arise from penalized estimation methods. Penalized estimation is a
procedure that reduces the variance of estimators by introducing substantial
bias. The bias of each estimator is therefore a major component of its mean
squared error, whereas its variance may contribute only a small part.

Unfortunately, in most applications of penalized regression it is impossible
to obtain a su�ciently precise estimate of the bias. Any bootstrap-based cal-
culations can only give an assessment of the variance of the estimates. Reliable
estimates of the bias are only available if reliable unbiased estimates are avail-
able, which is typically not the case in situations in which penalized estimates
are used.
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> plotpath(fit2$fullfit, log="x")
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Reporting a standard error of a penalized estimate therefore tells only part
of the story. It can give a mistaken impression of great precision, completely
ignoring the inaccuracy caused by the bias. It is certainly a mistake to make
con�dence statements that are only based on an assessment of the variance of
the estimates, such as bootstrap-based con�dence intervals do.

Reliable con�dence intervals around the penalized estimates can be obtained
in the case of low dimensional models using the standard generalized linear
model theory as implemented in lm, glm and coxph. Methods for construct-
ing reliable con�dence intervals in the high-dimensional situation are, to my
knowledge, not available.
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